Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Drug Deliv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178667

RESUMO

BACKGROUND: Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods like injections and oral administration, including preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short halflife drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic medications. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for non-invasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications. OBJECTIVES: The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization. METHODS: Data we searched from PubMed, Google Scholar, and ScienceDirect. RESULTS: In this review, we have explored the various methods of preparation of transferosomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization. CONCLUSION: In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.

2.
Curr Pharm Des ; 29(2): 79-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545714

RESUMO

About 2.8% of the global population are being suffered from Diabetes mellitus. Diabetes mellitus is a group of metabolic disorders that is characterized by an absolute lack of insulin and resulting in hyperglycemia. To overcome the challenges, many antidiabetic drugs are being used, and research is being carried out in search of more effective anti-diabetic drugs. To study the effectiveness of antidiabetic drugs, many diabetic models, chemicals, and diabetogenic hormones were used at the research level. In this review, we summarised various animal models used, chemicals that induce diabetes, their properties, and the mechanism of action of these models. Further, diabetes mellitus is generally induced in laboratory animals by several methods that include: chemical, surgical and genetic manipulations. To better understand both the pathogenesis and potential therapeutic agents, appropriate animal models of type 1 & type 2 diabetes mellitus are needed. However, for an animal model to have relevance to the study of diabetes, either the characteristics of the animal model should mirror the pathophysiology and natural history of diabetes or the model should develop complications of diabetes with an etiology similar to that of the human condition. There appears to be no single animal model that encompasses all of these characteristics, but there are many that provide very similar characteristics in one or more aspects of diabetes in humans. The use of the appropriate animal model based on these similarities can provide much-needed data on pathophysiological mechanisms operative in human diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Animais , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina , Diabetes Mellitus Tipo 1/tratamento farmacológico , Modelos Animais de Doenças , Animais de Laboratório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...